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Three two-dimensional plasma simulation models have been compared using an 
electrostatic two-stream instability as a test case. In one model the usual five-point 
Laplacian was used in Poisson’s equation, and the field was smoothed by interpolation 
with a bilinear spline function. In another model the difference approximation to the 
Laplacian was the nine-point operator prescribed by Hamilton’s variational principle, 
and the electric field was computed as the exact negative gradient of the potential. In 
the third model the nine-point Laplacian was used with the smoothed field. The test 
problem was an unstable double-streaming plasma that was initially cold in the streaming 
direction. The major result is that the evolution of electric field energy did not depend 
strongly on the choice of model. There was a much stronger dependence on the random 
numbers that were selected to represent the initial velocity distribution. 

I. INTRODUCTION 

We have compared three two-dimensional electrostatic plasma simulation 
models using as a test problem an unstable double-streaming electron plasma 
with an immobile neutralizing background charge distribution. The motivation 
for the comparison was to assess, for a problem in which collective effects dominate, 
the extent to which physical results depend on (a) the choice of numerical approxi- 
mation of the two-dimensional Laplacian, and (b) smoothing the electric field 
as opposed to computing it as the exact negative gradient of the scalar potential 
at every point. In each model the potential was represented as a periodic bilinear 
spline function; that is, it was taken to be a continuous, periodic, piecewise linear 
function along each of two orthogonal coordinate axes. One model was that 
prescribed by Hamilton’s variational principle when the potential is a periodic 
bilinear spline function [l, 21. In that model the difference approximation to the 
Laplacian in Poisson’s equation is a particular nine-point operator, and the 
electric field is computed as the exact negative gradient of the scalar potential. 
In another model the more usual five-point Laplacian was used, and the field 
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was smoothed by interpolation with a bilinear spline function. In the third model 
the nine-point Laplacian was used with the smoothed field. Our test problem was 
an unstable double-streaming plasma that was initially cold in the direction 
transverse to the streaming direction. 

For each model we computed the electric energy as a function of time for two 
completely different sets of random numbers that were chosen to represent the 
initial velocity distribution; we also varied the number of cells and the cell length 
in the mesh on which Poisson’s equation was solved. The result was that the 
evolution of the electric energy did not depend strongly on the choice of model 
for this problem; there was a much stronger dependence on the random numbers 
used for the initial loading. 

We had hoped to demonstrate that one of the three simulation models is much 
better than the others in describing the evolution of electric energy in this example. 
However, the fact that differences in the evolution due to choice of model for a 
given initial loading were overshadowed by differences due to changes in the 
random initial loading is consistent with the results of two related studies [3, 41. 
These two studies compared four one-dimensional simulation models with regard 
to collisional effects in a stable plasma [3], and with regard to the evolution of 
electric energy in an initially two-stream unstable plasma [4]. It was found, as 
in the present case, that certain quantities of physical interest are influenced 
more strongly by the choice of initial loading than by the choice of model. 

These negative results in the search for better simulation methods do nof mean 
that numerical simulation of plasmas is not useful or cannot be improved. However, 
they do mean that, to study certain interesting and important features of warm 
or hot plasma behavior, significant improvements must be made in our manner 
of representing distribution functions; the question of graininess in phase space 
is serious. It will not be adequate simply to represent phase-space distribution 
functions by a set of discrete particles of the sort currently used in simulations, 
nor will it suffice to improve our methods of solving Maxwell’s equations 
numerically. More effective methods must be found for making continuum 
approximations of the plasma in terms of a finite set of parameters, and for 
describing complex aspects of plasma behavior phenomenologically. Denavit [5], 
and Knorr and Shoucri [&8], have been concerned with the problem of effective 
continuum approximation recently, and Lewis [l] has described a general frame- 
work within which continuum approximations can be treated in terms of particle 
trajectories. 

Our comparison of the three two-dimensional models is not exhaustive. There 
remain other interesting questions that should be studied, and it is to be hoped 
that someone will address them in the future. For example one can ask how the 
predictions of the models compare and contrast on other aspects of our test 
problem, as well as on other problems. Indeed, it would be worthwhile to compare 
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the models on a problem that is chosen to emphasize differences among them. 
We have restricted attention to an aspect of the evolution of an initially two-stream 
unstable plasma that seems to us to be of particular interest, and to represent a type 
of question of interest in plasma physics. Our results must not be construed as 
implying that all simulation models are equally good, only that in some intersting 
cases the choice is not crucial. Previous work by Langdon [9-111, Lindman [12], 
and Okuda [13] has revealed important differences in the dispersive and stability 
properties of various models. Most of their results are for one-dimensional, 
electrostatic models. Much further analysis and comparison is needed to complete 
our understanding of the properties and relative merits of simulation models, 
especially in two and three dimensions for fully electromagnetic models. 

We now turn to the specific comparison that we have made. In Section II we 
describe the three simulation models and specify our test problem. The 
computational results are presented in Section III. 

II. THE SIMULATION MODELS AND TEST PROBLEM 

We consider N discrete particles in the periodic two-dimensional approximation. 
The particles move in the Cartesian x-y plane only, the vector potential is identically 
zero, and the scalar potential depends only on the two spatial coordinates and 
on the time t. The scalar potential 4(x, y, t) in all three models is defined with 
respect to a square spatial grid consisting of A4 cells in each coordinate direction; 
the edge length of each cell is A, and the lines x = 0 and y = 0 are grid boundaries. 
The potential is taken to be continuous, piecewise linear in x and y, and periodic 
in x and y with period L = MA. It is represented as 

M-l M-l 

4(x, Y>  0 = c c 4) gi(x>&(Y), (1) 
i=Ll j-0 

where the functions g,(x) are dimensionless local basis functions for one- 
dimensional, periodic, linear spline functions. They are defined as follows. 

ww - xl, if O<x<d, 
&4x) = px - w - 1) 4, if (n/r--1)d <x<Mrl, CW 

3 otherwise, 

I (1/4x - (n - 1) 4, if (n - 1) A < x < nd, 
&a(x) = Ul4K~ + 1) d - xl, if nd < x < (n + 1) A, CW 

0, otherwise. 
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These functions are so-called “tent functions” of width 24, and they are so 
defined that1 

+I, j‘4, t) = a&). 

The difference approximations to Poisson’s equation are of the form 

where the matrix T is a representation of V2, and P represents the charge density. 
For each model, the charge density is determined according to the usual “area- 
weighting” scheme. The explicit definition of P is 

Pii = 5 Qgdrjc”‘) g,(rk”), 
k=l 

(4) 

where r?‘(t) and r?‘(t) are, respectively, the x and y coordinates of particle k 
at time t, and Q is the charge of a particle. 

The three models that we have compared are characterized as follows. 

Model I. Use of the usual five-point V2 operator with a smoothed E. 
This model is similar to one used previously by Morse and Nielson [l 512. 

Model II. Use of a particular nine-point V2 operator with E computed 
directly from E = -04. This is the prescription of Hamilton’s variational 
principle. 

Model III. Use of the nine-point V2 operator from Model II with the 
smoothed E from Model I. 

In Model I, the matrix Tis the usual five-point operator for Vz; it is schematically 
represented by 

$1-4 i 0 1 0 1 1 (five-point V2). 
0 1 0 

(5) 

In Models II and III, the matrix T which represents V2 is the nine-point operator 

1 g,(x) could also be taken equal to a constant. In pp. 413-418 of [2], an example is given in 
which the functions g,,(x) are defined with go(x) = 1. 

* Model II differs from that of Morse and Nielson in that the interpolation of E, and E, in 
Model II is from values at locations midway between grid lines instead of from values at locations 
on grid lines. 
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that is prescribed by the variational principle. A schematic representation of the 
nine-point operator is 

1:-i : 
t 1 342 1 1 1 

(nine-point V2). (6) 

The corresponding matrix T is defined in terms of one-dimensional averaging 
and second derivative operators as follows. 

where 
Tijmm = u~2)u~l) + pu!2) 

In 3m zn ml 7 (7) 

(1) 
U& = 

s 
dx g,(x) g,(x), @a) 

and 

(2) 
Uin = - 

s 
dx g,'(x) g,'(x). @b) 

Evaluation of these integrals yields: 

I 

(4/6)[4&, + CL,, + &+oJl, if if0 and i#M- 1, 
p - In - (4/6)[4&,,, + @M-I,, + LA if i = 0, (94 

(W)[4~,-,,, + PM-29 + &J, if i=M-1, 

1 

ww--2L + (Ll,, + ~i+l,n)l~ if if0 and i#M-1, 
(2) 

Uin = om-%,n + (SAA1,n + LJI, if i = 0, C’b) 
(1/4)[--2SM-,,, + (SM-~,~ + S,,,)l, if i = M - 1. 

The operator u(l) is a (1, 4, 1) averaging operator, and zJ2) is the central difference 
approximation to the second derivative. 

The electric field components E, and E, are evaluated in two ways. In Model II 
they are simply the negative derivatives of 4, as prescribed by the variational 
principle: 

M-l M-l 

&(x, Y,  t) = - c c ~(0 g,'(x) a(y), 
i&j j=o 

(104 

M-l M-l 

(lob) 

In this case, Ez(x, y, t) is a step function in x and piecewise linear in y, whereas 
E,(x, y, t) is a step function in y and piecewise linear in x. In Models I and III, 
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the field is smoothed in the following manner. E&X, y, t) is linearly interpolated 
in x from the values E&n + l/2) A, y, t] determined from Eq. (10a); and 
E&c, y, t) is linearly interpolated in y from the values &,[x, (n + l/2) A, t] 
determined from Eq. (lob). This smoothing amounts to bilinear interpolation 
of the components of E. 

The electric field energy, 

U = & s dx dy E2(x, y, t) 

= & j- dx dv +(x, Y, t) V2$ 

is computed for Models I-III as 

(114 

The Test Problem 

For the test runs whose results are presented in the next section, the initial 
loading consisted of two counterstreaming, unstable electron beams, each beam 
containing 119,025 = (345)2 particles. The distributions from which the initial 
velocities in the two beams were selected randomly are 

and 

exp [-l/2 (F)” - l/2 ($)“I 

exp [-l/2 (*)” - l/2 (*)‘I. 

The random numbers for the two beams were completely different. For all runs 
the values of the parameters were 2)D = A+, , ro2 = .OlhDw, , and ugY = &w,, , 
where wP is the plasma frequency (4wzQ2/m) lj2, n being the total number density 
and m the mass per particle, and where hD is the Debye length corresponding 
to the thermal spread in v, for either beam. The periodicity length L was either 
32hD or 64X, . Initially the particles in each beam were placed at the points of a 
uniform square grid consisting of 345 x 345 points. This grid was symmetrically 
situated within the grid on which the potential was defined. The separation in x 
or y between adjacent particles of either beam was L/345. M, the number of cells 
in x or y in the potential grid, was either 32 or 64. Two completely different random 
number sets were used to initialize the velocities for each combination of L, M, 
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and model. All runs wer made using the time-centered leapfrog scheme with a 
time step dt = .25w;‘. 

The initial velocities of the particles were all uncorrelated. Our initial loading 
does not represent a quiet start as defined by Byers [14], in which a given, single 
velocity distribution would be reproduced identically at each point of a spatial 
grid initially. Such a “quiet start” is very expensive in two and three spatial 
dimensions for hot plasmas. For example, if we had maintained the same number 
of particles per cell in the potential grid initially, but had used a quiet start with 
only ten initial velocities to represent a Maxwellian distribution, then we would 
have required ten times as many simulation particles. 

There was no evidence of numerical instability with our initial loading. Total 
energy was well conserved for all runs: (IV,,, - Wmin)/(Wmax + W,i,) was 
less than 0.5 ‘%, where Wmax and Wmin are the maximum and minimum total 
energies, respectively. For Model II, the variational model, the fluctuation of 
total energy scaled as (d t)“, as expected. 

III. COMPUTATIONAL RESULTS 

Our example is an electron two-stream instability for which the plasma is 
initially rather cold in the streaming direction. The wavelength of most rapid 
linear growth is about 8hD. Field energy histories are displayed in Fig. 1 and 
Fig. 2 for a variety of combinations of simulation parameters. The characteristic 

L/X,=32 

FIG. 1. Electrostatic field energy histories for cases with L/AD = 32. 
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FIG. 2. Electrostatic field energy histories for cases with L/A0 = 64. 

rapid growth to a peak followed by a decay is exhibited in all cases. At the time 
of peak field energy, the plasma is dominated by a single mode, the fastest growing 
mode as determined by linear theory, and the evolution to a nearly flat-topped 
stable velocity distribution proceeds rapidly. These oscillations in the decay, 
most noticeable in Fig. 1 (L/h, = 32), correspond to the coalescence of trapped 
particle regions into regions of longer wavelength. This is the dominant process 
in one-dimensional simulations of the two-stream instability, but is of much less 
importance in two or three dimensions because trapping is not as effective [15]. 
In Figs. 1 and 2 the electric field energy is plotted vs time, instead of the logarithm 
of electric field energy vs time, in order to emphasize the differences among the 
various runs during the nonlinear phase after the initial peak in field energy. 

The major conclusion that we draw from the field energy histories in Figs. 1 
and 2, as well as from other diagnostics used in these simulations, such as phase 
space plots, is that some quantities of physical interest do not depend strongly on the 
choice of Model I, II, or III. We have observed here a much stronger dependence 
on the random number set used for the velocity initialization. It is conceivable 
that more dramatic model-dependent differences would be evident with some 
other test problem and other diagnostics. 
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